Search results for "Pressurized water reactor"

showing 8 items of 8 documents

Physico-chemical characterization of passive films on 316L stainless steel grown in high temperature water

2014

Physico-chemical characterization passive films on 316L stainless steel high temperature water nuclear pressurized water reactor photoelectrochemistry electrochemical impedance spectroscopySettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

Photoelectrochemical Characterization of Oxide Layers on 316L Stainless Steel Grown in High temperature Water

2014

Settore ING-IND/23 - Chimica Fisica ApplicataPhotoelectrochemical Characterization Oxide Layers on 316L Stainless Steel High temperature Water Nuclear Pressurized Water Reactor Corrosion
researchProduct

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

2016

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

Total absorption spectroscopyFissionQC1-999CHOOZ[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energy114 Physical sciencesSpectral linelaw.inventionPhysics::GeophysicsNuclear physicslawnuclear masses0103 physical sciencesstructure[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsPhysicsFission productsta114010308 nuclear & particles physicsPhysicsPressurized water reactorNuclear dataPandemonium effectPRODUCTS13. Climate actiondecay data measurements
researchProduct

Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project

2019

The water-cooled lithium-lead breeding blanket is in the pre-conceptual design phase. It is a candidate option for European DEMO nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant and EUROFER as structural material. Current design is based on DEMO 2017 specifications. Two separate water systems are in charge of cooling the first wall and the breeding zone: thermo-dynamic cycle is 295–328 °C at 15.5 MPa. The breeder enters and exits from the breeding zone at 330 °C. Cornerstones of the design are the single module segment approach and the water manifold between the breeding blanket box and the back suppo…

Breeding blanket; DEMO; EUROfusion; WCLLWCLL; breeding blanket; DEMO; EUROfusionComputer scienceNuclear engineeringBlanket01 natural sciences010305 fluids & plasmaslaw.inventionBreeder (animal)Conceptual designlaw0103 physical sciencesGeneral Materials ScienceEUROfusion010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringMechanical EngineeringPressurized water reactorFusion powerCoolantWCLLDesign phaseNuclear Energy and EngineeringMaterials Science (all)Breeding blanketBreeding blanket; DEMO; EUROfusion; WCLL; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical Engineering
researchProduct

Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod

2017

International audience; New insights on the fuel-cladding bonding layer in high burnup nuclear fuel were obtained using micro-Raman spectroscopy. A specimen was specifically prepared from a fuel rod which had been irradiated to an average burnup of 56 GWd.tU-1 in a pressurized water reactor (PWR). Both inner and outer corrosion scale regions were investigated. A 10-15 et956;m thick zirconia bonding layer between fuel and cladding materials which consisted of three distinct regions was observed. Close to the fuel, tetragonal, then monoclinic zirconia was identified as the main phases. Close to the bonding layer-cladding interface, peculiar Raman signals were observed. Similar signals were ob…

Nuclear and High Energy PhysicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Annealing (metallurgy)02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslaw.inventioncladdingTetragonal crystal systemsymbols.namesakelaw0103 physical sciencesGeneral Materials ScienceCubic zirconiaComposite materialBurnup010302 applied physicsNuclear fuelPressurized water reactorion irradiation021001 nanoscience & nanotechnologyNuclear Energy and EngineeringSpent fuelRaman spectroscopysymbols0210 nano-technologyRaman spectroscopyMonoclinic crystal systemNuclear chemistry
researchProduct

Analyses of the OSU-MASLWR Experimental Test Facility

2012

Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU) has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR) design, a small modular pressurized water reactor (PWR), relying on natural circulation during both steady-state and transient operation. The target of this paper is to give a review of the main characteristics of the experimental facility, to analyse the main phenomena characteri…

Engineeringbusiness.industryNuclear engineeringPressurized water reactorOSU-MASLWR natural circulation modular PWRExperimental dataEnergy mixModular designnatural circulationlaw.inventionThermal hydraulicsNuclear technologyNatural circulationNuclear Energy and EngineeringlawLight-water reactorlcsh:Electrical engineering. Electronics. Nuclear engineeringOSU-MASLWRmodular PWRbusinesslcsh:TK1-9971Settore ING-IND/19 - Impianti NucleariSimulationMASLWR SMR Best Estimate Thermal Hydraulic System Code Helical Coil Steam Generator Primary/Containment Coupling Natural CircuationScience and Technology of Nuclear Installations
researchProduct

Advancements in DEMO WCLL breeding blanket design and integration

2017

Summary The water-cooled lithium–lead breeding blanket is a candidate option for the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium–lead as breeder–multiplier, pressurized water as coolant, and EUROFER as structural material. The current design is based on DEMO 2015 specifications and represents the follow-up of the design developed in 2015. The single-module-segment approach is employed. This is constituted by a basic geometry repeated along the poloidal direction. The power is removed by means of radial–toroidal (i.e., horizontal) water cooling tubes in the breeding zone. The lithium–lead flows in a radial–poloi…

EngineeringPower stationRenewable Energy Sustainability and the Environmentbusiness.industryPressurized water reactorEnergy Engineering and Power TechnologyMechanical engineeringBlanketFusion power7. Clean energy01 natural sciencesEnergy storage010305 fluids & plasmasCoolantlaw.inventionFuel TechnologyNuclear Energy and Engineeringlaw0103 physical sciencesHeat transferWater cooling010306 general physicsbusinessInternational Journal of Energy Research
researchProduct

WCLL breeding blanket design and integration for DEMO 2015: status and perspectives

2017

Abstract Water-cooled lithium-lead breeding blanket is considered a candidate option for European DEMO nuclear fusion reactor. ENEA and the linked third parties have proposed and are developing a multi-module blanket segment concept based on DEMO 2015 specifications. The layout of the module is based on horizontal (i.e. radial-toroidal) water-cooling tubes in the breeding zone, and on lithium lead flowing in radial-poloidal direction. This design choice is driven by the rationale to have a modular design, where a basic geometry is repeated along the poloidal direction. The modules are connected with a back supporting structure, designed to withstand thermal and mechanical loads due to norma…

Neutron transportComputer scienceBlanket7. Clean energy01 natural sciencesbreeding blanket; CFD; DEMO; WCLL010305 fluids & plasmaslaw.inventionlaw0103 physical sciencesDesign choiceGeneral Materials Science010306 general physicsWCLL Breeding blanket DEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringWCLL Breeding blanket DEMObusiness.industryMechanical EngineeringLead systemPressurized water reactorFusion powerModular designNuclear Energy and EngineeringSystems engineeringbusinessTransport systemFusion Engineering and Design
researchProduct